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SUMMARY AND CONCLUSIONS

Calculations have been carried out to predict unsteady-aerodynamic
- sources of wing structureborne vibration for various modes of propeller

installation.

Mounted either upstream of the wing or downstream of the pylon that
supports it, a propeller at cruise must chop through-a steady but nonuniform
inflow field. For a pusher propellef the largest source of nonuniformity
is the wake of the upstream planform; for a tractor propeller it is the much
smoother, and therefore less severe, upstream interference of the wing at
the propeller disk plane. Both types of inflow generate a net harmonic
propeller thrust, collected at the hub and acting to drive the wing or

pylon in roughly the flight direction through the engine connections.

In the case of a tractor propeller the significant mechanism for
generation of harmonic forces is the unsteady-aerodynamic reaction of the

wing to the unsteady downwash induced by the convected propeller wake.

Both configurations and mechanisms have been analyzed here for operating
conditions and geometric parameters corresponding to the Hamilton Standard
high-efficiency propeller. On theoretical grounds we conclude that the
upstream wing effect will not result in a significant source of vibration.
Our calculations in this part of the study required that we first model
the interference wing flows of the Gulfstream-IT aircraft at the proposed

propeller location.

For a pusher propeller cutting through its pylon's wake we have predicted
a 40-1b thrust at the fundamental (blade-passage) frequency. The model of
wake momentum deficit for a nonlifting pylon was heré based on available
full-scale measurements for the wing of a typical airliner; it used the
average of pairs of data points above and below the wing plane, with the
wake properly scaled down and applied at downstream stations where the
propeller disk will likely be. Whether or not the 40-1b number will result
in an unacceptable noise level depends on wing/cabin transfer functions not

fully available yet, either theoretically or experimentally, and on whether
the force can be isolated effectively, for example, through praperly designed

engine mounts.




We did not analyze fuselage interference or boundary-layer effects;
however, for both wing- and aft-mounted propellers those flows should be
bounded in degree of nonuniformity by the wing interference and pylon wake,

with corresponding harmonic loads which fall between those predicted here.

Our estimates of wing pressure distributions due to wake impingement

also await structural/acoustic calculations for a final conclusion.

A few general recommendations strictly based on the aerodynamics

problems examined can be made, however:

Nconuniform Propeller Inflow as a Mechanism of Thrust Generation

1. Having a large number of blades is a good idea, not just from the
steady-performance viewpoint, which seeks lower individual blade tip speeds
while keeping design thrust constant, but also for the purpose of lowering
unsteady propeller thrust levels. For a given propeller RPM use of more
blades yields a higher value of reduced frequency associated with the blade-
paésage fundamental, and so in lower levels of noncompact blade-sectional

loadings contributing to total thrust.

2. An obvious suggestion is that the number of propeller blades be
kept even in the pylon-mounted, once-per-revolution excitation mode. For
this configuration odd blades would yield better coupling between odd
harmonics of thrust and those of the inflow nonuniformity and therefore would
be undesirable. By the same reasoning, if a pusher propeller is ever considered
for general wing installation, it should contain an odd number of blades since

the excitation would then occur twice per revolution rather than once.

Wing Excitation by Wake of a Tractor Propecller

1. similar to Item 1 above, a large number of blades will yield higher
reduced frequencies based on wing semichord and flight speed,and so, in lower

levels of wing pressure distributions for this mechanism.

2. Increasing the radius of the propeller should result in some decrease
in strength of blade-tip vortices driving the downstream wing, essentially
because keeping total performance thrust constant would then imply a more
gradual spanwise load distribution for individual blades and a lower near-tip

value of steady blade-sectional 1lift,
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M(R) ,M

NOMENCLATURE

blade semichord (Chapt. II), wing semichord

(Chapt. III); dimensional

sound speed; dimensional

wing chord; dimensibﬁal

Fresnel Integral and conjugate, Egs. I1I.25,26
wing thickness distribution (g' nondimensional)
function defined by Egs. II.30, 31

wing camber distribution (h' nondimensional)

instantaneous normal-to-wing vortex position:

dimensional
gust wavenumber at radius R; dimensional
wb/U, reduced frequency

kcosh , normal-to-blade leading edge wavenumber,

equal to k in part of Appendix A

normalized acoustic wavenumber mb/co

Possio kernel

arc length along blade midchord; dimensional
maximum sectional steady blade lift ; dimensional

circumferential Mach number for blade section at

R, in Chapter IT; flight Mach number in Chapter III
flight Mach number in Chapter TII
number of blades

wing pressure distribution and spanwise transform;

dimensional

two-dimensional range measured from blade leading edge,

Appendix A; nondimensional

radial distance to blade section in question; dimensional




* *
gy

Radial distance defined in Figs. II.4,5; dimensional

blade-tip value of R¥

Tip, hub, and effective-tip radii in Eq. II.28; dimensional
Rt/b

local spanwise blade coordinate; nondimensional

time; dimensional

unsteady blade thrust, Chapter II; steady-performance propeller
thrust, Chapter III

harmonic of blade thrust; dimensional

propeller thrust; dimensional

harmonic of nronaller +hruct
ropeller thrust

.............. P 1Y ; dimensional

LaliCiiS oo~

harmonic of sectional blade thrust; dimensional

nonuniform propeller inflow (Chapter II), or tangential

velocity for shed wake (Chapter III)

normal-to-wing leading edge interference horizontal flows

due to thickness and lift, respectively; dimensional

normal-to-propeller disk components of ut,u;; dimensional
th . . .

m Fourier component of u; dimensional

QR in Chapter II, flight speed elsewhere; dimensional
flight speed in Chapter II; dimensional

propeller-induced downwash velocity; dimensional

harmonic of w, dimensional; and its spanwise Fourier transform

downwash velocity due to induced and shed-wake flows;dimensional

normal-to-leading edge coordinate (Chapter II for blade,

Chapter III for wing); nondimensional
chordwise position of maximum camber displacement; dimensional

blade-based coordinate, Fig. II.3; nondimensional

horizontal coordinate normal to wing leading edge, Fig. II.2;

dimensional
_5..



A(R) ,A
w

=t

Xe position of propeller hub

blade mean-sweep function and tip value, Figs. II.4,5; dimensional
spanwise wing coordinate, Chapter III; nondimensional

maximum camber displacemeng; aimensional

vb

xf+izf; dimensiocnal

normal-to-wing coordinate; Chapter III; nondimensional

normal-to-wing coordinate; Chapter II; dimensional

z2¢ value of propeller hub

wing angle of attack

A-MZ(R)coszA(R), Chapter II; or /1-M2 based on flight
Mach number, Chapter ITIIL

/l—Mi coszAw (Chapter II)

angle of blade twist plus pitch

strength of wake vortcex sheet; dimensional

vortex strength; dimensional

u+kx/82 in Appendix A; nondimensional

angular position in bladé polar reference frame (Appendix A); or

circumferential angle in propeller disk (Chapter 1T)
circumferential component of blade sweep, wing sweep

wavenumber parameter, Eq. II.24; nondimensional

2 .
equal to kM/B~ in Chapter III
frequency parameter; Eq. III.23; nondimensional

background density; dimensional




wing thickness ratio

perturbation velocity potentials; dimensional
harmonic of ¢

wavenumber parameter, Eq. II.23; nondimensional
propeller rotational speed [rad/sec]

mN




I. INTRODUCTION

An important task of the present research effort is the prediction
of some of the new wing or pylon forces likely to be introduced by the
aerodynamics of high-speed propellers. Estimates similar to those reported
here will serve as input to aircraft-specific models of structureborne
vibration for the wing and fuselage until more accurate calculations become

widely available. We consider two possible mechanisms for the generation

of such airloads:

First, chopping through the wake of an upstream supporting pylon
will cause unsteady blade thrusts on a pusher propeller. If not properly
isolated somewhere within the volume of the nacelle, the total thrust force
will drive said pylon harmonically in a direction approximately colinear
with that of flight, thereby producing fuselage vibration and cabin noise.
The same can be expected of a wing-mounted tractor propeller cutting through
the steady upstream interference field of the wing. The present study

examines both modes of propeller installation.

Secondly, under the assumption of zero external interference or cross
flows, steady operation of a tractor propeller has an associated system of
helical blade-tip vortices which appear frozen in the rotating frame of
the propeller, but on the wing plane induce an unsteady downwash distribution

that in turn gives rise to unsteady pressures and lift.

Hanson has developed what is probably the most general linear-regime
formulation for lifting and nonlifting unsteady propfan flows. Given
sufficient computing resources and time one could-apply his model to analyze
rigorously both situations listed above (standard lifting-surface theory
being a special case of his integral equation, which therefore could be used
for the wing as well). As earlier stated, however, our objective here is
the less ambitious one of temporarily front-ending our own fairly detailed
structural medels for wing and fuselage with rough estimates for the aero-
dynamic forces which might drive them. To this end, predictions of unsteady
thrusts for blades passing through either a pylon's wake or the wing's

upstream interference field are here based on the following simple model:




The nonuniform propeller inflow field is broken up into a set of
circumferential gusts at a chosen number of radial stations between

hub and tip. For each of these we compute the value of blade sectional

1lift (thrust) using the approximation of local aerodynamic reaction

implicit in high-frequency strip theory.2 The model assumes zero blade
pitch and twist, and so really addresses only the circumferential component
of the aerodynamic problem ; it becemes more and more naturally valid for the

radially outward, highly loaded blade sections at lower pitch.

At every blade section we neglect coupling between steady-performance and
unsteady loadings. However, Myers and Kerschen; have determined that the omitted
interaction could lead to 0(l) underestimates of airfoil radiated noise,
so that their results rationally suggest that our predictions here could be
low by 6 dB. On the other hand, since at each blade section we apply
a Mach number based on only circumferential motion, the effective decrease
in compressibility through neglect of the flight speed component should
result in some overestimate of sectional thrusts, thus partially offsetting
the above neglected effect. The model also starts out under the assumption
of no interference among blades, but later demonstrates that this simpli-

fication is indeed largely justified for the parameters in gquestion.

The basic unsteady-aerodynamic theory is that by Adamczyk4 for a swept ,rigid
flat-plate airfoil passing through a gust; we apply it at each blade section
using the local value of blade sweep, chord, and circumferential wave- and
Mach numbers. Tip effects are simulated in an ad hoc fashion by allowing
for decay of load amplitudes near the blade tip while keeping phases at
their two-dimensional strip-theory values. In the final step individually
integrated blade thrusts combine to yield the total thrust harmonic acting

along the propeller axis.

For the mechanism of wing excitation by the propeller wake, the model
uses a system of straight potential vortices appearing on the wing's Trefftz
plane as a set of points rotating about the propeller axis; the
downwash induced is constant across the wing chord because the vortices
are taken to be aligned with the freestream direction. The wing is again

a flat plate of constant chord and infinite span. The unsteady-aerodynamic



theory this time is Amiet's5 generalization of that in Ref. 4 to include
plunging motion, valid for high subsonic flight speeds and/or high

propeller blade-passage frequencies (it should be pointed out that Amiet
has developed his theory for chordwise downwash distributions other than
constant, thus allowing for the possibility of modelling some of the effects
of actual vortex tilting relative to the wing chord. This further

generalization, however, is not pursued here).
. 6 . :
Weir has recently analyzed the low-speed case of this mechanism.

Because the application to structureborne sound analysis for this
mechanism uses continuous wing plating to interface with the source,
predictions will here be in the form of a pressure distribution over the

wing surface instead of a single load or moment, or running lift.

In summary, Section II will be devoted to the prediction of the time-
varying point thrust propellers could feel due to several sources of non-
uniformity in inflow, while Section IIT analyzes unsteady distributed wing

airloads induced by the steady vortex wake of a tractor propeller.

-10-




IT. PREDICTICNS OF HARMONIC AXIAL FORCES FOR PUSHER AND TRACTOR
PROPELLERS IN NONUNIFORM STEADY INFLOW

A. Introduction

There are two prototypical configurations being considered for the
new propfan technology. In one the propeller is mounted in the conventional
sense, ahead of the wing, with the nacelle growing out of the latter. This

mode of installation is currently undergoing tests on a Gulfstream II aircraft.

In the other basic design each nacelle is held near the stern by an
outboard pylon connected directly to the fuselage. This type of installation
will replace the aft-mounted turbojets now on T-tail aircraft such as the
DC-9. It uses pusher instead of tractor propellers, whose wake flows
do not impinge directly on any part of the aircraft, which therefore should
be free of that type of excitation. However, since each propeller must then
cut through the wake field of the upstream pylon supporting it, new uhsteady
blade loads are generated and transmitted to the wing via the engine structure

unless isolated effectively.

Thisiharmonic propeller thrust force is also present, though to a much
less expected degree, for a tractor propeller passing through the upstream
interference field of the wing. In the following sections we develop an
analytical/numerical model to predict its spectra for both types of

installation.

A basic assumption in the development is that blade;blade unsteady
interference is negligible. 1In Appendix A we use the blade loads so
computed and verify that mutually induced flows and pressures are in fact
an order of magnitude lower than corresponding quantities for the incident

gust field.

-11-



B. Models for Incident Velocity Fields

1. Pylon Wake Affecting Pusher Propeller

The wake of a pylon will be modelled using available measure-
ments for the wing of a typical large aircraft.7 Fig. II.1l shows mean-wake
data for the 32%-chord station downstream from a wing's trailing edge. We
shall construct the wake of a nonliftihg (symmetric) pylon by taking the
average of velocity deficits above and below the wing plane, thereby
generating a figure similar to II.1l but for '

[u(z+)+u(z-)]

2Uf

We shall also adjust the data to generate wake profiles at stations other

than the 32%-cw downstream point. The procedure will be to apply Schlitchting's8
simple mixing-length model for the diffusion of the two-dimensional wake

behind a cylindrical body. He calculates that the rates of widening for the
far wake and of reduction for the maximum velocity deficit are respectively
proportional to the square~ and inverse square-root of distance downstream

of the object. Thus we have that u(x,z=0)/u(x=32%cw,z=0) can be obtained
fron1/i?3§3;7; and bv‘,(X)/b‘ﬂz%_c,W from /27?735;;, where bw here denotes the "Qake
width" and x the distance downstream measured from the leading edge. By
referencing x to the leading edge we generate a wake profile still fairly

sharp at, say, one full chord downstream of the trailing edge (x=2cw). If

we used instead the trailing edge or even the mid-chord point, a more diffuse
profile would result. The sharper profile is chosen because it yields
conservative estimates for the blade-passage and higher harmonics of total

propeller thrust.

2. Upstream Interference by the Wing

In the case of a tractor propeller the upstream wing inter-
ference for lifting and non-lifting wing flows at cruise will be computed
by applying potential theory to the actual airfoil section of interest. The
model uses a wing of infinite span and thus ignores wing-tip and fuselage
effects at the propeller location. Compressibility and wing sweep enter
the calculation through the Prandtl-Glauert factor /1~M§coszAw, MfCOSAw being

the component of flight Mach number normal to the wing's leading edge.

-12-




Fig. II.2 shows the idealized wing propeller system for the upstream
influence calculation. All complicating structures have been removed for
simplicity. The perturbation velocities u* in the direction normal to
the wing's leading edge are readily found from classical potential theory,

e.g., Ref. 8: to be, for thickness and lifting flows,

* Cw - -
ug T _ (xf-x)g'(x)

U cosA = 8. fdx R (I1.1)
0 Xgm® e

*

c
W
i S S b = /2= (heca : (11.2)
UfcosA TR Vv Y-% c -x @ '
W Y 0 w

I

f

where c, is thewing chord, Uf the flight speed, Aw the wing sweep, and
Zf=zf6f' where Bfé /1—M%coszAw, with Mf=Uf/co, the flight Mach number.

In Eq. II.2 Y=xf+izf. The f subscripts on xf,zf, and Zf denote field points;
on Mf,ﬁf f denotes the flight speed of the aircraft. In Eq. II.1 T is the
airfoil's thickness ratio and g'(x) is the surface slope function from
leading to trailing edge. We shall model our wing as a four-digit NACA

airfoil, for which the thickness function g' is given, by

C
g' (0 = .7423/ L -.6300 - 3.5160 ()
. “w
2 3
X X
+ 4.2645(—) ~2,030(=—) (1TT.3)
c c
w w
For the above "real" airfoil Eg. TI.] is inapplicable if one's objectives

are pressures (or u*) in the vicinity of the leading edge, essentially
because the round nose violates the small-disturbance assumption of the
theory. This defect, however, is local and should not seriously affect the
interference calculation of interest here. Toading solutions for an
elliptic airfoil discussed by Van Dykelo, for example, indicate that even
though the small-disturbance solution fails at the leading edge, it

nevertheless yields the correct interference several nose radii away.

-13-



In Eq. II.2 h' is the slope of the mean-camber line, for a four-

digit airfoil given by

2y, (% -x) 0< x< %,

2

X

a

h'(x) = « - .

_ (I1.4)
2y, (x=x ) x, Lx< e,

(e -x)
w a

where X, is position between leading and trailing edge where the camber
*
displacement has its maximum value of Y, In Eq. II.2 & stands

for angle of attack.

As we have said, Egs. II.1 and II.2 give the perturbation velocities
in a direction normal to the swept leading edge. Of interest here are

corresponding quantities ut,u9~ in the direction normal to the propeller
*

plane; in terms of uQ c these are obtained from
r
" cosh
= IT.
u = u cosh ( 5)
* A (1I1.6
u, = uj cosh .6)

Referring to Fig. II.2, we note that field points on the propeller disk

Xg and zf are given by

X. = x +R sinpA cos® , x_ <0 (IT.7)
£ o W o
f £
Z. =2z *R siné (I1.8)
£ of

where the value of R ranges from R at the propeller hub to R, at the

h
propeller tip.

Substituting Egs. II.7,8 with IT.1,2 into Egs. II.5,6 yields the total

upstream interference field

*

The percent chord values of y ,xa take up the first two digits of the
4-digit NACA designation, and the thickness ratio the last two digits. Thus
a NACA 2410 airfoil has ya/Cw=-02, xa/cw=.04, T=.1.

-14-




u(R,8) = ut(R,9)+uz(R,6) (11.9)

normal to the propeller plane as experienced by the blade section at radial

position R as it travels from 6=0 to 6=27.

C. Unsteady-Aerodynamic Model for Propeller

1. General Coupling Between Velocity and Lift

The nonuniform inflow field at the propeller plane, whether
caused by upstream interference or by the pylon's wake, is now expressed at

every radial station as a superposition of circumferential gusts:

o

u(R,8) = X, u (Rye 1M (I1.10)
m=—m m
2™
1% o a A
qags 1Ine
u_(R) -j oo u(®le (1I.11)
0

On the rotating frame of the propeller the speed of travel for each
of the above gusts is U(R)=QR, Rh<R<R ; 0 is blade rotational speed in radians/
sec, and the phase factors in Eq. II.1l0 become m(e 2t) for the ] propeller
blade turning in the clockwise direction (8 is deflned positive in the
counter—-clockwise direction). Interpreting angular displacements in terms

of local arc length, we have that

me =

= i3

RO = km(R)b[cosA(R)xb+sinA(R)'S] (I1.12)

where km(R)=m/R becomes the gust wavenumber value at radius R,A(R) is the
local blade sweep angle, xbcosA=O the blade-based origin of the locally
rectilinear circumferential direction,and s is the local spanwise, or radial,

coordinate. The situation for a typical radial station is portrayed in Fig.II.3.

If the blade sweep's "radius of curvature" is much greater than the
acoustic wavelength everywhere between hub and tip it should be possible to
analyze each radial blade position as a locally straight planform passing
through a gust of wavelength 27R/m convected at local Mach number M(R)=QR/CO
at local blade sweep A(R). Fig, II.4 shows how the latter is geometrically
defined and calculated. We shall consider a family of radial sweep distri-
butions given by the relation

-15~



g (R¥) = yt(R*/R‘t*;)n (11.13)

where

(2
R = VR* +[Y(R*)]2, RE:,/Ri-yi (11.14)

where as indicated in Fig. II.5 Y, is the in-plane position of the blade
tip relative to that were the blade not swept; yt=0 in the analytical

model corresponds to unswept blades. From Eq. II.13 and Fig. II.5 we have that

A(R) =A(/R*2+y2) = tan t [a%l(;%:_)_] -tan fy/R] (II.15)

We temporarily postpone further discussion of details of the unsteady
aerodynamic calculation and for now simply observe that its goal is fo
yield a value of modal thrust Tm for each of the N blades cutting through
gust m. For the jth blade then, the time history of unsteady loading would
be given by

- -im(6,9t)
T(t) = E T e ) : (IT.16)

m=—o

where Tm is proportiocnal to um. Taking ej=2w(j-l)/N, j=1,2...,N for N

equally spaced blades, we obtain the total propeller thrust as

tot N .
T(t) = ), T,(t) (I1.17)
g3 .

Substituting Eq. II.16, interchanging orders of summation, and noting that

N ~im2w{(j~1IN
2: e =10 if mFmultiple of N
=1 N if m=multiple of N (11.18)
we have that

t ©0

ot E .

tot imNQt tot

- = T 4 T = I1.19

T(t) — m € o NTmN ( )

-16-




where N is the blade-passage frequency; T is proportional to uN obtained

mN
from Eq. II.1l:

27

ds imNB
umN(R) -./. om u(R,8)e . (I1.20)

0

Quantities NTmN for m=1,2..., represent the propeller thrust harmonics
of primary issue here. The corresponding gust wavenumbers of interest are

kmN(R)=mN/R, etc.

2. Calculation of Modal Blade Sectional Thrusts

The sectional thrust (lb/ft) at radial station R corresponding

to gust wavenumber k is given by (gust interaction- and sweep angles both equal A):

mN
-ikss
21rprcosAumN . e

i .!nN — = _
8 /kmNb cosA/82+p

1-i E*[2(u-d)]

+ £(u,y) for u>y

/u-lp
< 1;1 EL20m)) | £y for Ky
/m—u
1 . . . —idn
Tl BB 02 gy Dpean - 22— | for u=y
\ v m i 811 3250
< (IT.21)
with
£F(u,p) = i 1 [-2i(u—‘p)’ /211 E*[2(u+p)]- Ll?—”
K . "3/2 M= & jeb) < ;
1-i *
+._E_ -~ E*(4p) (II.22)
* The last two terms of Eg. II.22, léi -E*(4u), appear misprinted in Ref. 5

as -l—;i ~E*(4y) .
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and where

kmNbM2c053A 5 ) 5
Y = 32 (= kxM cos A/B 'kx=kmNb cosh) (I1.23)
k b
u o= —"‘N2—- / M2 cos”A-sinZA (IT.24)
R

with A=A(R) given by Eq. II.15; b=b(R) is the radially varying blade
semichord; again, kmN=mN/R, M=M(R)=U(R)/CO=QR/CO and B =n/l-M2c052A; p is
background density. E(a) denotes a Fresnel integral of argument a;

a

. 1
E(a) =f dt elt (~ 1—25- as a-») (I1.25)
" oYamt

so that its conjugate E* is given by

a
E*(a) =f at e ¥t (-*-l——éi as a-x) " (II.26)
O Vont
-ik s
The exponential factor e S in Eq.II. 21 keeps track of the relative phase
of sectional loads for different positions along the blade radius. Referring
to Fig. II. 3 for the straight.blade in rectilinear flight, the quantity
s . sinl denotes the flow direction projection of the spanwise distance
between two blade points. The phase factor should therefore be {-jkmNh.s.sinA}
or exdf—ikSS} with ks=kmNbsinA. In the standard literature the spanwise
coordinate s usually carries the symbol "y"” so that exp{—ikss} is

exp[-i"kyy"} , With "kvy"=kmNbsinAy in agreement with the above argument.

The exp f—ikss} factor will be simulated here by analogy to the
rectilinear case. The arc length difference in the direction of the in-
coming circumferential gust between radial station R and that at the hub is

, =1 . .
Rsin "y/R, with y given by Eq. II.13. The phase factor therefore becomes
-ik s . , =1

e s _ R imNsin y/R (11.27)

The slight relative shift in center of pressure, or lift (1/4 chord for
steady lift), due to the variation in circumferential Mach number and gust

wavenumber from blade hub to tip will not be taken into account (cf. discussion
in Ref. 4, p. 24).
_18_




Finally, we wish to modify the basic sectional thrust distribution
to account for the /Rt-R load dropoff as R approaches the tip. Thus
we choose a value of R=Reff where the sectional thrust will achieve

approximately its maximum value, say at

Reff =R + 75%(Rt—Rh) (11.28)

and define the total blade thrust ha}ménic TmN for usé in Egs. II.16,19

as follows:

R
t

TmN =f dg TmN[Q.(R)]G(R) (I1.29)

"

where 2 denotes length along the blade and

(1 for R < R< R .. (1I.30)
G(R) =
+ - .
(a_*a R) /R_-R for R .. < RS R (I1.31)
with
R
a = - eff 5 * 1 (I1.32)
2(Re"Rogg) /R Roge
1
= II.33
1T Rk )2 | !
t eff

Constants a,a are determined from the continuity requirements for the

1

sectional load and its slope at Reff'
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D. Application of Model

1. Propeller/Aircraft Geometry

Figures II.6a,b show front views respectively of a Hamilton
Standard propfan prototype and of one of its bladesf The indicated di-
mensions are approximate projections on the propeller plane of actual
propeller chord widths, etc. Our calculations will be based on them. -
The blade sweep distribution from hub to tip uses the midchord curve
shown in Fig. II.6b; in applying the model earlier described and depicted
in Fig. II.4,5 we found a curve.with the power n=3 adequate for the

present case.

Fig. II.7 shows top and side views of the installation geometry for
a Gulfstream-II aircraft, and dimensions drawn for our calculations.
Unfortunately, we were unable to obtain similar schematics for a pyloﬁ—
mounted propeller; our calculations for this case are here based on
assumed propeller locations downstream in terms of pylon chords. We use
the 32%cw and 100% c, wake positions as measured_from the pylon's trailing

edge.

2. Models of Incident Velocity Fields

(a) Wake Signatures for Wing oxr Pylon

Fig. II.8 shows the result of fitting a two sided

Gaussian to the wake measurements shown in Fig. IT.1 for a lifting
aircraft wing, and modelled velocity deficits experienced by two radial
points on the propeller in their circumferential trajectory. The figure
applies to a propeller with axis lying on the plane of the wing, which
extends in the spanwise sense on both sides of the propeller. Only the
8=7 spike will be used for a nonlifting pylon, and then symmetrized
about its maximum value. The signature felt by the blade section near
the hub (Rh) is wider than that at Reffé's Rtip because the effective wake
takes up then a greater fraction of the total trajectory.

As a further illustration, Fig. II.9 shows the situation for a pusher
wing-mounted propeller with axis at a distance above the wing plane

corresponding to that of the Gulfstream-T1I nacelle (although a pusher

* I. Loeffler, NASA Lewis Research Center, personal communication.
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wing-mounted propeller is presently not a candidate concept, we examine

it also for completeness).

(b) Upstream Interference for Wing

Fig. II.10 shows predicted interference wing flows for
the circumferential trajectory of R=Reff='79 Rtipéa's it. The top insert
shows both the cross-section of the Gulfstream-II wing 1in a plane parallel
to the flight direction, and the equivalent 4-digit NACA airfoil section in
a plane roughly perpendicular to the leading edge (note Fig. ITI.7);
ya/cw=.013, xa/cw=.l9, thickness ratio t=10%. A value of 1.5O was taken for
the angle of attack. Point 8=0 is inboard and axially closest to the wing
{middle sketch and Fig. II.2a). Nonlifting interference is always negative;
it is maximum at 8=0. Lifting interference is positive above the wing
(because the lift is positive) and negative below; it vanishes identically

at the two points where the R=Reff cuts the extended plane of the wing.

3. Frequency/Mach Number Regime of Validity

Fig. II.11 shows the sweep distribution of the midchord
curve traced out in Fig. II.6b. The other curve is a plot of Eq. II.24.
After comparing approximate results with other more rigorous calculations,
Amiet (Ref. 5, p. 1078) has determined that Adamczyk's high-frequency
theory for a leading-edge flat plate passing through a gust at zeroc angle
of attack-should be reasonably accurate for u>w/4. If trailing-edqge effects
are included (as we have done here), he states that the results apply
beyond a much lower value of u. As far as compressibility and frequency
effects in the propeller plane are concerned, we conclude that the u curve
in Fig. II.1ll confirms the need and relevance of the noncompact aerodynamic
model being applied. The values shown correspond to the fundamental

N(Q=226 Hz (m=1l, N=8).

4, Predicted Blade Loadings and Total Propeller Thrust

{(a) Pushex Propellers

Figs. II-12a,b are for a pusher propeller on an inboard
nonlifting pylon at 32% and 100% chords downstream of the trailing edge.
The axis of the propeller coincides with the midplane of the pylon. Each

figure shows two curves: the wake field's Ffundamental harmonic as a

* W.E. Arndt, R.W. Nazarowski, Lockheed Georgia Co., personal communication.
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function of radial position, umN(R)=uN(R); and the corresponding sectional
blade thrust as given by the integrand of Eq. I1.29. The 32%-cw<downstream
wake is only slightly richer in Nth Fourier component than the lOO%-cw wake,
with the largest differences appearing at the hub station.

Figs. II.13, 14 show predicted ha{mqnics of total ghrust T;St

(Eq. II.19) for the two cases of Fig. II.12a,b. The 32-dB level for the
fundamental corresponds to a 40-1b force acting along the propeller axis.
Major differences between 32%—cw and lOO%-cw curves appear to be postponed

to higher frequencies.

Figs. II.l15a,b show results for the unpursued concept of a wing-
mounted pusher propeller; they correspond to propellers with (a) axis on
the wing plane and, (b) axis elevated 1.78 ft above the wing plane. The
axial propeller location is 32%-chord aownstream from the trailing edge.
The roughly doubled values in Fig. II.15a relative to those in Fig. II.l2a
reflect mostly the more effective coupling that exists for the "two-per-
rev" wing over the once-per-rev pylon, given that the number of propeller
blades is even (8). Fig. II.15b for the raised propeller displays a fairly
erratic behavior in fundamental harmonic of incident velocity field (and

associated sectional thrust).

Figs. II1.16 and 17 show corresponding predictions of total thrust
harmonic content. The 38-dB value for the fundamental in the z =0 case
corresponds to a 70-1b force. The reduced value for 226 Hz in ng. IT.17b
can be attributed to the relatively poor coupling some radial stations

t
have to the 8 h Fourier modal number (Fig. II.1l5b).

(b) Tractor Propeller on a Gulfstream-II Wing

Fig. II.18 shows the propeller airload response to the
combined lifting and nonlifting flows of Fig. IT.10. The extremely low
values (-48 dBE4x10-3lb) suggest that this mechanism will not be significant.
The reductions in level have two causes: first, the maximum interference
amplitudes are low relative to those for the wakes previously gxamined, say
2-3% vs 20-25%; this difference, however, would account for only 20 dB

relative to the wake results. More significantly, of course, is that the
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propeller is sufficiently removed in the upstream direction that the
interference signature is a very smooth function of 8 at all radial

stations. Since the response couples only to multiples of the funda-
mental Fourier counter, which is high due to the number of blades, it

would appear that low levels are virtually guaranteed for this mechanism.

E. Predicted Benefit of a Large Number of Blades in Reducing Harmonic

Propeller Thrust

Egs. II.19 and 21 point out that the theoretical total unsteady
. : — -1
propeller thrust is proporticnal to p(QR)me(kmNb) .N.Blade Area, where
KmNE=mNQbeff/(QReff)=mNbeff/Reff, an effective or average reduced frequency.
We have assumed that its value is sufficiently high to approximate Eq. II.21
by its high-frequency asymptote, i.e., with E*=(1-i)/2, etc. If we now
write w _=aefoR, where aegf is an effective instantaneous angle of attack
mN mN mN

in the guasi-steady aerodynamic sense, it follows that the unsteady thrust

harmonic for the propeller is proportiocnal to p(QR)Z(kmNb)—l.N.Blade Area.

Now, the'corresponding quantity for the design steady thrust may be
similarly written as p[Ui+QzR2].N.Blade Area.EL, where EL is an effective or
spatially-averaged lift coefficient for each blade. With QR/Uf=O(1),
we therefore obtain that the ratio of harmonic propeller thrust to propeller

design thrust is proportional to

tot
:Nt « 1 (I11.34a)
> N
- ] .
design (kmNJ)CL
« L (TT.341)
N

a vanishing quantity for high N for a family of propeller designs which keeps
performance thrust constant. Having a large number of blades therefore makes

sense from the perspective of propeller unsteady aerodynamics.
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III. PREDICTIONS OF WING AIRLOADS INDUCED BY A PROPELLER WAKE

aA. Introduction

The model for the propeller wake will here be essentially the
same we developed in Ref. 1l. A system of rotating straight potential
vortices, one for each blade, radially located at the propeller tip
positions. The path, or position, of the vortices is assumed unaffected
by the presence of the wing -- unlike in more sophisticaﬁed treatments
by Hardin and Mason}z of a similar situation at low speed, and by Lindblad,13

for high speed. Also, we take each vortex to be aligned with the freestream

direction, so that induced velocities over the wing chord are constant.

Even for this simple representation the system will be seen to induce
a fairly complicated unsteady downwash distribution as function of spanwise
location. In Ref. ll we circumvented the development of a theory that
would couple wing sectional airloads due to such an inflow by arguing that
at high speeds (M=.8) and reduced frequencies individual spanwise stations
should react locally, in a strip-theory or lifting-line sense, because
noncompactness effects should then tend to concentrate unsteady airloads
at the wing's leading edge. 1In the present study we remove this approxi-
mation. Now different wing sections are allowed to influence each other,
and the computed airload at each point on the wing surface depends on that
at every other point. The wing remains unswept and of constant chord. The

model is applied to the Hamilton Standard propeller/Gulfstream IT wing

combination.

B. Propeller Wake Model and Wing Aerodynamics

1. Analysis of Downwash

Figure III.1 shows the wake model. Each vortex contributes a

downwash field on the wing plane given by

I y-yo
2n 2.2

(y—yo) +ho

with 90=thoth, h0=Rtsith; so that the total influence of the N straight,

equally spaced vortices is




N

wit,y) y/R-cos [Qt+27 (k-1) /N1

1+(y/R) 2-2 (y/R) cos [ Qt+2m (k-1) /N

where y and R stand for ?/b,Rt/b, with wing semichord b assumed constant.

The analysis to obtain the corresponding harmonics begins with an
, . . . . i i
identity involving two arbitrary complex numbers T=el8, z=re * (e.qg.,
Ref. 14).

* 2
T + z - l-r

-2 L 2 (III.2)
T -2 l+r"~2rcos (a-8)

where * denotes conjugate.

For r<l we may now express the left hand side of Eq. III.2 as

Since r, the magnitude of z, is by definition positive, this relationship
is immediately applicable to the range O<y/§<l.

Thus, letting y/§=r, Qt=a,
2m(k~-1) . .
-8 = -—T;_—_ , and performing some algebra one finds that
- ‘n‘ -
v/R-cos (0t + 2 ;xk =, 2 - ml 27 (k-1)
= - L (y/R) cosm{Qt+ ——~§——ﬂ
=.2 - 27 (k-1) m=1
1+(y/R) =2(y/R)cos [Qt+ — 1 (TTT.3)

By a similar calculation for r>1 the left hand side of Eq. III.2 takes
the form

‘ © cosm(a—e))
- Il+2 mgl rm ‘

and for l<y/R<» we find that

Eﬂlﬁlll] o cosm[Qt + ]

N - N
— - - = - III.4
1+ (y/R) -2 (y/R) cos [t + 2—"‘—‘—;-1—)1 m=0 (y/R) ™ ( )

y/ﬁ—cos[Qt + 2mk-1)
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If the cosines on the right sides of Eqs. TITI.2 and TII1.4 are now expanded

out, and the sum % is interchanged with %, the following two factors appear

N
2wm(k-l)] .3 sin[znmékZLL

cos | k1

1 N

i Z

K ] ;

the first of which is zero unless m is a multiple of N, and then it equals N.
The second sum is identically zero. These conclusions may be used to find,

for example, that the right side of Eq. III.3 becomes

= Nm-1
N mgl(y/R) cosmNQt

The simple manipulations used to obtain the series expression of w for

O0<y<= may be adapted to the negative ranges -l<y/§<0, —w<y/§<-l. One writes

1-¢2 1-¢2

l+r2-2rcos(a-8) l+r2—2(-r)cos(a—8+n)

2m(k-1) b 21 (k-1)

and then replaces y by -y>0 and N Yy N

+ 7 in the previous

results.

The final series representations for w=w(t,-o<y<sare found to be

™ o imNQt R N'ml+l §<y<m
r e \ (=)
m y
m=—w
- N|nﬂ+1 _
__In pNmlr R TR
w(t,y)—4ﬂR Y
t
and
= JimNat oo g, (y/ﬁ)Nlml-l 0<g<h
om
Mm=—oo
(—1)Nlml_l(-y/ﬁ)N|m|'l-§<y<o (III.5)

L

where vm=2 or 1 for m=0, m#¥0, respectively; Kronecker delta Gom equals 1

when m=0 and is zero otherwise. Identifying me(y) in the above, we have

that
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[ (I—%/y)N|m|+l Rey< o
\)m l
- N m|+l
piimle2 R, ey <R
-y
me(y)=AIﬁa = N|m|-1 -
e (y/R) 0<y<R
(§ -1) T
mo
L (-l)Nlml-l(-y/-R)N|m|'1 ~R<y <0 (III.6)

As discussed in Ref.11l, it is of interest to note that the harmonic
decomposition in Eq. III.5 yields a nonzero value for wo(ly]>ﬁ). This

"static" component of downwash would affect the steady performance of the

wing.

We shall need the spanwise Fourier transform

-]

- _ iy
me()\) = /dy e me(y) (III.7)

-0
of the above; we obtain

y = in
wo W)= exp {5~ (N{m|+1)}

N
2nR,

Vm§N|m|+l N|m| 3-1 (N|m|—j)!cos[k§- %(Nlm[-j+2)]
(Nlm )1 A

3=1 - gNim[-3+1

- T%T si([AlR) FULl }

(1-8__) (N|m|-1)! {Nlml-l J@iml-3 300

* ~N[m[-1

- cos [AR- IT-(N|m|+j—].)]
j=1 SECIETESIY 2

sinAR
11I1.8)
* ANlml} (

1
where si(z) is defined as
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The quantity in large square brackets is real; it is odd in A for even
values of mN and even in \ for odd mN. Since the exponential factor outside

(N m|+1) /2 N{m|/2

equals (-1) if Nm is odd and i(-1) for even Nm, it follows

that in general .

w . (=\) = me(k) (I11.9)

where * denotes complex conjugate, in agreement with the observation based

on Fig. III.2, which shows 4nRth(y)/FN (i.e., m=1) for N even or odd, that

@

i J(;y sin(Ay)me(y) for Nm even or (III.1l0a)

- -
me(X) = w
dy cos(ky)me(y) for Nm odd (IIT.10b)

-}

i.e., that Eq. II1,10a is odd in ) while III.10b is even in A.

2. Aerodynamic Response

The harmonics of the downwash distribution of a single
propeller have been shown to be always odd about the propeller axis if
the number of blades is even, and either even or odd (depending on whether

Nm is odd or even) when the number of blades is odd.

The boundary-value problem for the perturbation velocity

potential #(x,v,z,t) on the frame of reference of the wing is

2 2 2 2 2

-{ 3 3 ] b D
(——-2 s —3> - —% =0 for all x,y,z (I1I.11)

ax Yy 9z c_ Dt

o

39 ' .

5;(O<x<2,y,o,t)=-w(t,y) (IT11.12)
D¢

BE(XEZ,y,o,t)=0 (ITTI.13)

where co is sound speed and D/Dt=3/3t+(U/ B 3/5x:x,Y,z have normalized by wing

semichord b. We now let
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(-]

¢(XIYIzIt) = Z ¢mN(XIYIZ)elmNQt

m=-®

(III.

as required by Eq. III.5; also, with w=mNQ, k=wb/U, and u=kM/82, we

let

* iuMx
gmq(x,y,z) = gmq(x,y,z)e H -

and obtain that

2 % 2 % 2 *
3 ¢ a ¢ 3 ¢
%*
mi + mN + mN + u2¢ -

3 %2 3By a(ez)?

* -iuMx
3¢ N (0<x<2,y,0) __ vy Yle

3 (Bz) B

Finally, letting Bz=Z and

27

-0

~ -idy =*
Q;N(x,y,z) ='/'Q- e &y (XiZid)

to conform with Eq. III.7, yields

327 BT
k p—
5 + 2” + ﬁ2 ¢mN =0 all x,z
ax 9Z
-%* w -iuMx
9N (0<x<2,0)=- —‘gﬁe
3z
: 3
(% + 30 & (%22,0)=0
8
where
2,2 2
io=vuta%/8%=-1 /2% /8%
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the latter equality actually being a consequence of the choice of branch
cuts for w>0 to satisfy the radiation condition (for ﬁ2>0 is assumed to

. . . . ~2
have a small negative imaginary part which becomes large when u <0).

Since the propeller wake model uses straight vortices aligned with the
flight direction, the induced downwash is constant across the wing chord
We now adapt an approximate solution by Amlet:5 for an a:.rfo:.l in osc1llatory
plunging motion at high flight speed. Since Amiet has considered only the
purely two-dimensional constant downwash problem , the e&pression
for loading given below constitutes a generalization analogous to Adamczyk's4
skewed-wing analysis for a convected gust. We write the final result for

the y-transform of the pressure distribution on the lower surface of the wing:

- - o Uw v
p . (0<x<2; 2z=0 ;1) = (1+i) R

m 2 22

B /ﬁ “uM
KE* [ (fi-uM) x]-1 - exp (-1 (ji-uM) x}
2ux
~ 1-i

FET L (270 ]-(T)} (ITI.24)

from which we compute the surface pressure everywhere

<@

- Ay - -
P (Xiv,0) = f dre | ypmN(x,O iX) (III.25)
2w
pUTN (1+i)
BRt 2n2

ai -
—_— ~ 3 Vi e
//~2 2 2 { KE* [ (fi-uM) x]1-i / STy exp{-i(ji-uM) x}
u
* -3
+E [(ﬁ+uM)(2—x)]-(lgi)t

.Re {exp[i;lm[mhl)—ixy] GO0} (ITI.26)
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where ﬁmN(A) stands for the quantity within large square brackets in Eq.III.S8.
Since pmN(-z)=-pmN(+z) the actual loading, defined in the positive-lift
sense as pmN«)-)-pmN(O+), is therefore given by +2 times Egqg. III.26. Also,

for m<0 pmN=p?-mN)’ where asterisk denotes conjugate.

The large-y behavior may be found by deforming the contour impliait in
Eq. III.25, in A space,from the real axis to the several branch points present
in the integrand; thus, for example, for y>0 one could deform to the lower half
plane to pick up contributions at X=+uB%=kM=k ., the normalized acoustic
2 2 2)-1/2

wavenumber mb/cO (from the (i -u M factor) and at A=+uf (from a branch

point of fi). It is obvious that of these the A=uB point is clearly a weak
contributor compared to k=kac. As |y|-+°° a straightforward asymptotic
analysis therefore indicates that pmN~exp{-ikac|y|}, a net acoustic wave
having its "origin" within the area of strong aerodynamic action.

- 2

t is important €O point out that solution III.24 violates the condition
of zero pressure on the plane of the wing both ahead of the leading edge and
along the wing wake; it is the result of constructing a preliminary solution
which satisfies the downwash boundary condition over the entire plane, and
then correcting, by cancellations, pressures both ahead and behind the wing.
As discussed in Ref. 5, for the chordwise-constant downwash case these
corrections are found simultaneously rather than sequentially, with an out-
come that does not satisfy pressure continuity either forward or aft of the

wing. More corrections would result in better approximations to the computed

loading.

3. Estimation of Vortex Strength

The estimate of strength for blade-tip vortices is here based
on the following model: We assume that all blade-bound vorticity
beyond a chosen radial station rolls up into a single concentrated vortex
(Fig. III.3). We may take this radial station as that where the sectional
loading is maximum, although for our purposes even this is unnecessary.
Assuming a simple triangular shape for the lift with a prescribed maximum

value L , one obtains that
max
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1 T 1
— R—_
2L (=)

= I.27
max £t N cosBt (11I.27)

regardless of radial point where the maximum is assumed to occur; in the
above T is total steady propeller thrust and Bt is an effective or average twist
plus pitch angle. The term in parenthesis denotes each blade's contribution

to total performance thrust.

Applying these ideas at the.tip radial position, we next invoke
the lifting-~line relationship,

pl"r/U2+(QRt)2 =L (I1I.28)

max

from which finally we obtain that the leading factor in Eq. 111.26 is

u
pulN _ s (II1.29)

T
Re Ri cosBy ./uz+(mzt)2

suggesting that, for a given propeller design thrust T, lower pressures are

obtained if the propeller radius is increased.

C. Application to Gulfstream-II Wing

For the Gulfstream-II we take b=7 ft (l4-ft chord at engine location)
and the total propeller thrust T at cruise as 1460 lb; Bt=%70.l2 Flight Mach
number M=.8; density and sound spceed values correspond to an altitude of
35,000 ft. The results discussed below are for the fundamental frequency,

226 Hz, which at 35,000 ft has a wavelength of 4.3 ft.

Figures III.4-7 show predicted pressure distributions pN(x,y,z=O_)
over chords at y=§/2, ﬁ, 1.5§, and 4R. All results display the l//; leading-
edge singularity. For most spanwise stations the singular region appears to
be quite confined in extent, following one's expectations given the high
speed/frequency of the situation (u=28). As earlier discussed, the nonzero

values of loading computed along the trailing edge are an artifact of the

approximate lifting-surface theory.
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Figures III.B8-10 are spanwise plots of pN(x,y>0, z=0) for chord
stations x=.5, 1, 1.5 (quarter, half, and three-quarter chords). For y<0 the
results would be inverted mirror images of those shown, due to the antisymmetry
of loading about y=0 for an even number of blades. Point 4R corresponds
to a dimensional distance of 18' outboard of the propeller axis. The
numerical solution displays the acoustic wavelength for large y in agreement

with the discussion following Eq. TII.26. The decay rate is l/|yr.

The most interesting feature of Figures III.8-10 is the smoothness
of the aerodynamic response near y=§ to an input downwash which is dis-
continuous there (cf. Fig. III.2a). The loading is generally nonzero at
y=§ because y=§ is not a point of spanwise downwash antisymmetry. Neither
of these observations would apply to the loading obtained from the strip-
theory model, which requires that the spanwise behavior of the pressure be
the same as that of the input downwash, which, incidentally, 1lacks the
acoustic wavenumber at large distances from the origin. The input downwash
is strictly hydrodynamic in nature, while the aerodynamic response to it

should be definitely wavelike, or acoustic.

We have noted that for an even number of propeller blades all harmonics
of spanwise loading pmN are antisymmetric about the propeller axis in spanwise
coordinate. All, therefore, contribute net moments which drive the wing as
a whole at the engine station. Were it not for the fact that the frequency
regime requires that plating response also be considered in detail, these

loads could be applied in cruder models of wing motion.

When the number of blades is odd the fundamental distribution is even
about the propeller axis, contributing a net 1lift. Higher harmonics are

alternately odd and even, contributing either torques or forces.
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D. Predicted Benefit of a Large Number of Blades in Reducing Unsteady

Wing Airloads Induced by the Wake of an Upstream Propeller

The argument to demonstrate that for a given value of propeller
performance thrust and aircraft lift unsteady wing airloads are reduced

by a large number of blades will here parallel that in Section II.E.

Egqs. III.24 and 16 show that at high reduced frequency k (based on
wing semichord and flight speed) induced wing pressure distributions are
proportional_to pUFN/Rt.k—l/2, where pUI‘N/Rt is in turn proportional to
T/Ri, with T denoting steady propeller thrust. Since for steady flight the
amplitude coefficient of wing pressures may be interpreted as proportional
to the product of the freestream dynamic pressure and a spanwise-variable

lift coefficient, we have that for point X,y on the wing surface

2
P T/Rt 1

« . = (III.30)
d —_
pstea A OUZCL(Y) /K

Moreover, since k=mNQb/U=mN(b/Rt)(QRt/U)~mN(b/Rt)~mN; it therefore follows
that for a given value of design thrust T unsteady wing pressures fall

. -1/2 L
relative to steady pressures as N / , as-N is increased.
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APPENDIX A
JUSTIFICATION FOR EXCLUSION OF MULTIPLE-SCATTERING EFFECTS

A.l INTRODUCTION

Two of our simplifying assumptions have been that the propeller
blades effectively lay flat on their plane of rotation without pitch or
twist, and that unsteady velocities mutually induced. by unsteady components
of blade-bound and shed-wake vorticity are negligible in comparison to

incident modal velocity amplitudes.

The first assumption causes mutual influences through direct pressure
fields to be identically zero because flat-plate loadings for each blade
involve then only thrust dipoles normal to the propeller disk. We shall
examine its validity by estimating the pressure field with which two
neighboring blades insonify each other, given that in fact a finite angle
of twist exists between them. The procedure will be to use the aerodynamic
theory available for a single airfoil at zero pitch or twist, and then to
tilt the resulting source distribution through the actual pitch angle to find
non-~zero values of near-field pressure at off-plane points occupied by two
adjacent blades. The results will be normalized by the input disturbance
pressure prmN corresponding to the mNth harmonic of the incident wvelocity
field, and their fractional value will represent the pressure field's measure

of unsteady aerodynamic interference, or multiple scattering, between blades.*

Similarly, estimates of interference through induced flows will rely
on the zero-pitch loading solution appropriately tilted according to pitch.
The ratio of such results to the amplitude of the incident velocity's first
harmonic (say) will indicate a-posteriori to what extent each blade's

aerodynamic response can be expected to be independent of others'.

Fig. A.1l shéws a "radial" view of two of the N blades at an arbitrary
circumferential cross-section through the propeller. As stated above, we
shall use blade loadings corresponding to passage at zero twist and pitch.
We shall further simplify the calculation by considering only the leading-
edge contribution of such loading and its associated pressure field, i.e.,

by taking the airfoil to have its trailing edge at infinity.

%*
Mutually induced pressures are not used as input conditions in rigid-airfoil
aerodynamics; however, certain situations may require simple estimates of (cont.)
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A.2 BLADE-BLADE AERODYNAMIC INTERFERENCE THROUGH DIRECT PRESSURE FIELDS

For the semi-infinite chord airfoil Ref. 14 gives the pressure field

an arbitrary field point (near or far):

cos([1/2 tan-l(Btane)]

p(r,8,t) = —PUw
X 1/2
B/Qr(u+kx/82)(l—M2coszA 51n26) /
kxMzcoszA-x
.exp[i{wt-kss + > -m/4-uxt ] (A.1)
B
where in the present application, we have that
kx = kmNb cosh
w = QmN
. , =1
kss = mN sin "y/R (A.2)

-1
8 = tan z/x r =/x2+z2

etc, with kmN' b, and A all functions of radial position R. In Eg. A.l
U=QR,M=U/c°, g = /l-MzcoszA and me are also functions of R; also, the ©
range must be defined as (0,2m). We drop the b-subscript on the blade-

based coordinate system defined in Fig. II.3.

For m=l (the blade-passage fundamental) we have applied Eq. A.l to
calculate airfoil A's pressure field at airfoil B's location} and vice-
versa. The results normalized by prU are displayed in Fig. A.2
for three radial stations. The maximum interference pressure is
shown to be about 16% prN for R=Rtip for blade A on blade B. This result,
based on an airfoil model which does not satisfy the Kutta condition and
which in fact yields maximum pressures along the wake direction, should be
a conservative estimate for the lower values of blade pitch near the blade
tips. Unfortunately, a correcting trailing-edge solution to prove the above
assertion by modifying Eg. A.l to satisfy the Kutta condition is not available

in closed form for arbitrary field points and, at any rate, the value of 16%

*

total chordwise gradients as input, for example, to unsteady boundary-layer
flow calculations. Another possible application is the total loading influence
function as input in an aeroelastic calculation.
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S

is sufficiently low to justify neglecting the forward-scatter from airfoil

A on airfoil B. The broken lines in Fig. A.2 summarize the computed levels

of normalized backscatter (airfoil B on A). As expected, they are for

the most part significantly below the solid lines, not just because the
spurious trailing-edge point is further away, but because compressibility
effectively lengthens distances to upstream points (as well as enhaqces
propagation downstream by washing it along). The effect is embodied in

the argument of the cosine factor in Eq. A.l. Let us take, for example, two
angular positions symmetric about the 8=w/2 divide between upstream and
downstream regions at zero pitch, say 61=4S° for dotnstream and 62=135o for
upstream. With g=1, i.e., without compressibility, 91/2=22.5o and

92/2=67.5°. With B=1/2 (M=.866 for A=O,however,tan-l(Btane)becomes,respectively
for 8,0, tan " 1/2=26.6° so that 1/2 tan | (Btane)=13.3°, and tan ' (-1/2)=153.4°
so that 1/2 tan_l(Btane)=76.7°. Compressibility has therefore increased the
difference between upstream and downstream signal amplitudes from

M=0: cos(22.5°)-cos(67.5°)=.924-.383=.54, to M=.866: cos(13.3°)-cos (76.7°)
=.973-.230=.74.

In principle Egs. A.l and II.2l, etc., hold up to supersonic Mach number

sec A, when sweep is present.

* : .
It is important to remember that the model of the airfoil with semi-

infinite chord becomes irrelevant at M=0 for the special case of zero blade
sweep,and that it is useful in the so-called hyperbolic regime only when
the frequency and Mach number are both high encugh to yield certain minimum
values of u and kx/sz.(cf.Ref. s's skcwed-gust analysis).

-37-



A.3 BLADE-BLADE AERODYNAMIC INTERFERENCE THROUGH INDUCED FLOWS

The potential ¢ associated with the pressure field of Eq. A.l is
obtained from Bernoulli's equation

be _p
Dt o o 4 (Ai3)

where D/Dt is the linearized substantial derivative 3/8t+(U/b)3/3x. The

solution of Eq. A.3 is conveniently expressed in terms of contour integral
C(Fig. A.2a)
: ibw 1 2
¥x,s,2,t)= —F—— — -
{x, . t) 278 = ‘—Z[‘

.exp[i{wt-kss+kxM2coszAx/Bz}]

. [d)\ exp{ -iAx—’lZ[/kz-uz}
¢ AT ek /8%

(A.4)

-

where in the present context w,kx,ks, etc are as given by Egs. A.2. 2 is
the nondimensional normal to airfoil coordinate compressed by the B factor,

i.e., Z=Bz; ¢ is shorthand for p+kx/82.

Differentiating with respect to zb we obtain the ratio of induced

vertical velocity wl(x,s;Z) to incident velocity harmonic w N at field

point x,2.
i i 1 2 2 2
= - = = i{ wt-k s+ A
‘y (x,s,2,t) 27 )T exp [if wt kss kxM cos Ax/87}H1]
mN

fdAMﬂJ expl ~iix-|z| /.\2-u2}

> (A.5)
c X-kx/ﬁ
If we let Z=0 and take x>0, Eg. A.S5 yields
wi( >0 8,2=0,8
R e—expli{ wt-k_s -k ¥}1 (A.6)
me s X
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as required by the boundary condition of flow tangency on the semi-infinite
chord extending over (X x<« For x<0, Z=0, the branch point contribution
(Fig. A.2b) from A=-u gives the vertical velocities induced upstream on

the plane of the blade:

wl()s 0, s,z=0,t)

Y

=-exp[1(wt—kxx-kss)]

_ exp[-i{ 7/4+5(-x)} |
Vg (-x)

1-(1+i)E* {5 (-%) ] (A.7)

For large values of -x, i.e., far upstream, and specializing to the case of

2
zero sweep so that u=kxM/Bz=kM/8 , the above becomes proportional to

.ikMr s - Py cot11

exp (7T {x+(1-M) ——1]
3/2
(z(-x1

indicating a quickly decaying signal of very short wavelength as M-l
travelling at speed -(l-M)cO relative to the airfoil (—cO relative to the
freestream). In Egq. A.7 the vertical induced velocity becomes infinite

- + . . s
as x>0 Dbecause at x=0 the blade-bound vorticity has an infinite value.

Eq. A.7 could by itself be used to estimate upstream flows induced
by blade B on A if one neglects the pitch angle so that the two blades are

coplanar; small values of le(x<0,0,t)/w over the chord of A would

o
then justify basing flow tangency on incident velocity alone as far as

upstream influences are concerned. Here, however, we are alsc interested
in potentially stronger shed-wake effects, and for this reason will keep

the two airfoils at nonzero pitch.

In calculating the shed wake a choice must be made for the model of
loading on an airfoil of finite chord. Here we choose that given by
Eq. A.1l 8=0 and corresponding to the leading-edge solution, but applied
only over 0<x<2. For x>2 the wake condition of p=0=(4p) will be enforced.
At sufficiently high frequency or subsonic Mach.number, the trailing-edge

correction to such a loading has the relatively unimportant local effect
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of "rounding off" the resulting pressure discontinuity at x=2 by providing
it with the proper‘/2—x decay as x»z-. For simplicity of notation and

analysis we neglect sweep effects and take kx=k (AZ0).

The calculation can proceed along the lines of the analysis for the
upstream influence by considering the singular structure of the velocity's
. 17
r-transform, or can instead begin by posing Possio's integral for a point

in the wake. For the sake of variety we take up the latter approach:

2
wS(x,2=0,t) = - :—U dE Apif, ) K(|x-E]) (A.8)
0
with K(Ix-El) given by
1 iuM(x-£) . 2 2
K(x~g) = 8 gelu (x E)(lM Hi )[u(x-i)]-H; )[u(x—E)] )
k (x-£) /8°
. iu (2)
+ iBZe-lk(x-E) f du e Ho (Mlul) (A.9)

-0

after normalization by the semichord b and noting that |x—€|=x-€ for
x>2 (the wake). The superscript s on w> (x) stands for shed wake. In Eq. A.8,

. + - + . . .
Ap is given by p -p =2p or twice the result in Egq. A.1l with =0, 0<r=x<2:

2

s _ - L -ip(1-M) €
e (x,‘i 0.8) (1-1) (142.}[:1)7r lwtf % ® K(x-€) (3.10)
mN Ve

0

Incidentally, the upstream result in Eq. A.7 for a semi-infinite chord

airfoil can also be obtained from Possio's integral applied for x«0. Then

we would have that
. . p ~ip(1-M)E
4<01 wiix,z=0,8) _ .y [ 2K et J/.Qi ¢ k(x-g) (A.11)
: W (1+M) 7 /£ )

mN )
0
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where K(|x-£|) is now given by

1 iuM(x-€), . (2 2
K(E-0) = 35 { N T ) " futem0 183 -0
k(x-£)/8°
+ ipg2 o ik(x=8) f " du &' HC(JZ) (=Mu) " (A.12)

-0

In Eq. A.ll the integral extends to infinity because the leading-edge
loading has not been cut off past x=2 as required by Ap(x>2,z=0, £)=0 ~- the

wake condition implicitly applied in Eq. A.10.

We begin by looking at points far downstream from the trailing edge
in terms of wavelengths and later examine in what sense the far wake so
computed can be expected to hold closer to the trailing edge, given the
contemplated high reduced frequencies and moderate-to-high subsonic Mach
numbers. We approximate the Possio kernel by its large kx behavior. Thus,

k (x-£) /82

iBze-ik(x—E) du Héz)(Mlul)elu

_ 12 e-ik(x—E)i 2 _j'

du H(z)(Mu)eiuf
5 o
k(x-€)/8

-ik (x-€) L+ L. ko
~ = 2Re {l- M [1-(1-1)E f1+M (x E)H}

(a.13)

Cagem ik (-€) | —iu(lem (e-€) | () (Lewy | O(H-a/z)f

/ip(=-£)

Similarly, for u(x-£)>>1 we have that
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. . 2
eluM(x-s) {iM H{ ) [u(x-E)]-Héz) [u(x-8) 1}

-ip(1-M) (x- 1+1i) (1+M -
e ul ) (x=€) ) _ ) ( ) + ou 3/2) (A.14)
Yy (x-€)
which cancels the second term on the right side of Eq. A.l3 so that
-ik (x-§ - ikM
K(x-£)=-1/2 ¢ 75 w0 (-0 TV enp (- TR (-0)) (AL15)
H(x=E)
Substituting Eq. A.15 into A.10 we finally have that
, s - L B
lim w (x,2=0,t) - =(1-1i)E (Zk )e ik (x-Ut/b} (A.16)
W 1+M
kx> mN

The exponential factor in Eq. A.l16 carries the obvious physical
interpretation that the wake is convected and thus steady in the still fluid
(for which the nondimensional x-coordinate becomes xs=x-Ut/b). As 2k/(1+M)-»=»

(recalling that the 2 stands for nondimensional chord) we have that

S -ik (x~Ut/b -1/2

w (x,2=0,t) = -e ( / )[1+0(k / )} (A.17)
k x>

This initially surprising result states that at high frequencies the

"inviscid" far wake shed by an airfoil continues to cancel the vertical
velocity of the input gust. In a more general high-speed context, it
suggests the possibility of effectively nulling out for a chosen streamline
the normal velocity component of an undesirable convected disturbance through

the introduction of an airfoil.

There is yet another path to Eq. A.l6 which although perhaps analytically
less self-contained is at the same time physically more revealing. We write
the integral equation for the strength Y(xs) of the vortex sheet in the far

wake in the frame of reference of the still fluid:

=)

Fapee L 0 (2.18)
s 21 xs's

-0
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where the integral equation is of the Cauchy-Principal Value type and is
so designated. The kernel [~2ﬂ(xs-£)]_l solves the Laplace equation and is
the usual special case of Biot-Savart's Law applied to the self-induced

normal velocity field; it may be obtained from the Possio kernel for zero

frequency and Mach number.

Fourier transforming Eq. A.l18, recognizing that

]

1 i A -ix(x_-E)
— = 3 dxa e s (aA.19)
Xg g 2 ‘/ﬂ |X

-0

and that G(A)=FT{;;(XS)} is proportional to §(A-k), we therefore have that

JO0 - ani ﬁr § (A-k) (a.20)

Y(xs) = Ziws(xs)=> iws=u+ (A.21)

. + - + +,~ . . .
since y=u -u =2u , where u ' denote tangential velocities just above and
and below the shed wake.

Returning now to the airfoil's frame of reference we recall that

application of p=Ap=0 along the wake requires that

%—g (x2,0,t)=0 (A.22)

whose solution is

®(x,0,t) = &(x=2,0,t - —‘ﬁuz—)b-) (A.23)

+ ~ + )
since #x0,0,t)=0. With &{x,0 ,t)=4¢(x,0 )exp(iwt) Eg. A.22, however,
states that ’

N t

iwe (x,00e == L y(x,t) (A.24)

vjc

which via Egqs. A.23 and A,21 yields
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—2ik -
bl - 9(2,0) exgl iw[t-(x-2)b/U]} (A.25)

y(%,t)

ws(x,t)=- Eﬂi%;&l exp{iw(t-(x-2)b/U} (A.26)

Now, in Ref. 5 Eq.l1l5 Amiet has calculated ¢(x,0) to be

- kx e-ikx .
d(x,0) = (l-l)E(i:ﬁ) X bme (A.27)

and so we finally obtain that

S . 2k .
wo(x,t) ——me(l 1)E(l+M) expl iw[t-xp/U]} (A.28)
thus reproducing Eq. A.16, which we now see is the result of two physically
cancelling effects. On the one hand we have the k-l loss of 1lift at high
frequencies displayed by Eq. A.27 (¢(2,0) is 1/2 the total airfoil bound
circulation); on the other we have the linear dependence on frequency of

the rate of vortex shedding as shown by Egs. A.24-26.

For very high frequencies far-wake vertical motions have been found
in Eq. A.17 to be identical to those self induced by the semi-infinite
loading of Eq. A.l. The obvious conclusion is that given a willingness to
neglect the effects of the near wake, which is reduced in both strength
and extent with increasing frequency, we may take the solution of Eq. A.1l
to model the vertical velocity distribution over -« x<», z=0 for an actual
airfoil of finite chord. Again, the essential sin committed is omission
of an additional effective origin introduced by the near wake in the
vicinity of x=2+. We justify it by reasoning that next to the infinite
discontinuity in normal velocity across x=0i shown by Egs. A.6,7 the

neglected source should be comparatively unimportant.

Reintroducing sweep, in a form suitable for computation (removing the 1/v-x
singularity), mutually induced normal velocities for airfoils A and B are

given by

i
w (x,2z,t)

w

. 2 2 2 .
= exp (1(n/2+kxM cos Ax/B —kss+wt)}ublzl.
mN
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22,02
-ik £7/8

f aﬂiz’ w/ix-62) 2+ (82) %) e
aE
0 /ix-£2) %4 (82) 2

2,2
ik £7/8
(2) 2)2, (g)2 %

. H) (u/(x+s Y+ (B2)T) e [g{l-(1+i)E*(c£2)}

/ (x+€2) 2+ (82) > -

exp{-i(n/4+f_€2)]} (A.29)

/ng

When calculating the influence of A on B, x=0 is at A's leading edge; for

that of B on A,x=0 is at B's leading edge. In both calculations |z| is the

blade-blade vertical separation given by (2nR/bN)sinBt.

Fig. A.3 shows predicted induced velocities based on Eg. A.29. As
expaected they are more pronounced for A on B than vice-versa, with an
overall high in amplitude ratio of roughly 14%. We conclude that for the
present situations interference through induced flows is negligible by

about the same margin as direct pressure fields.
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Fig. II.1 Mean wake measured at 32%-chord range downstream of the trailing

edge of a typical full-scale aircraft.(courtesy of Douglas Aircraft

Co.)
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(a)

Z¢

(b)

=

J_ | ) (c)

Fig. II.2 1Idealiration for wing interference model (a,b);and coordinate
system “or propeller blade acrodynamic analysis (cf. Pig., TII.3

for expanded view of blade point C)).
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2IIR
mN

Fig. II.3 Definition of geometric parameters at typical blade radial station,

point(i)in Fig. II.2c; blade is assumed stationary and gust travels
in positive 6 direction because blade rotates in negative 8 direction
(adapted from Ref.4).
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ton"(ay(R )
aR*

tan” [y(R™)/R"]
(=sin” [y(R*)/R]

AIRY= A(JRRE +y?) = tan” ' [ay (RY /oR' |- tan™ [y(R"V/R']

Fig. TI1.4 Schematic of modeled mean-sweep line for a blade, showing
definitions of sweep and other parameters; global version

of Fig. II.3.
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] Do 0 |
9
75
) } RT-Ry
y/y7 = (RVRY) . © Vs
RYRY = Ry/R¥ + o (1-Ry/R})
'RH/FQ¥ = Eﬂiﬁfiz———- J o5
~/ |-(yT/RT)2 )
0 1
Fig. II.5 Mathematical model of family of blade-sweep lines, one for

each value of power n, using yt/Rr=l/2, Rh/Rt=]/4'
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Fig.

ORIGIMAL PATE IS
OF POOR QUALITY

II

.6

(a)
(b)

Frontal view of full-scale propfan prototype;
Expanded view of one of its blades indicating approximate

circumferential dimensions and circumferential components

of blade sweep angle.



ZOf=+].78| — ' _‘;;:;;;;:—__

w
/

Fig. I1.7 Top and side views of Gulfstream IT wing and nacelle showing

dimensions relevant to calculations.
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20°

10°

4.5

Fig. II.l1 Computed values of frequency parameter p as a function of
hlade radial position, and modelled component of circumferential

blade sweep.
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|UN]
~ — 5 ft/sec
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Ib/ft
|L.. 2.5
(a)
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} R (ft) 3
Rh Rt
|un |
ft/sec
u ~5
L I Tl
| Tn (R)GI
Ib/ ft
(b} 11— 2.5
| i | | | ] ] | ]
5 ’1 1.5 2 25 3 35 4 42’5
Rh R (ft) Ry
Fig. II.12

Computed fundamental of velocity deficit vs blade radial position
(amplitude of gust), and calculated sectional loads for:

(a) propeller 32% of chord downstream of pylon trailing edge and,
(b) 100% chord downstream. -59-
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Fig. I1I.15 Predicted inflow fundamental and sectional load vs radial position
for a wing-mounted pusher propeller; propeller position is 32%—cw
downstream of trailing edge: (a) propeller axis on wing plane,

(b) propeller axis at elevated nacelle position (1.78 ft).
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Fig. I1I.18 Predicted spectrum of thrust propeller force (re 1 1lb) due to
upstream wing interference for wing-mounted tractor propeller

(cf. Figs. T11.7,10); axis is at elevated nacelle position

(zo =1.78 ft).
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for single vortex
W= L Y-Yo
em (V-vo)z + hg

¥o= Rcos t, hg=RsinQt

D
W(t,y) /r
N

2

Qt Plane of wing

{ />y

—_———— - ———
F
o

o
l

D D

Fig. III.1 Wake model for a four-bhladed propeller, indicating horizontal

plane of wing and vortex-induced downwash.
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Fig. III.2 Spanwise behavior of normalized downwash fundamental 4nRth/FN

(b) odd number of blades.

for: (a) even-bladed propeller;
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Fig. III.3 Assumed triangular distribution for steady blade lift for

calculation of vortex strength.

-68-




*z/9=A 3e paoyo buim J03 uoTINQqTIASIP @anssaad poajorpard $ III ‘b3

X
Sl Gl G2l | Gl G Ge’ GO’

! I 1 | | ! | {

S0l



N

VA

4=k 3Je pioyp Buim 03 uUOTINQTIISTP Sanssaad paldTIPdId §°III ~bra

Sl

G

G2

GO’

— e W

a—

— Kiowbouw

[r et

|

|

o-




mm"» Je paoyo buim 103 UOTINQTIASTP sanssaad pajorpoid 9°III btd
X
G/l Gl G2l | GL G G2 GO
e s _ I _ I _ I
lll/
Kiouibowj
B |oay

1ac

mjo
n
>




“4p=K 3e paoyo Huim I03 uoTINQrIIsTp danssaid peIdTPdAd L°III “b1a

K iouibowj

-72-




41— x=.5 (1/4 chord)

a :
| Imaginary
3 \

l'-

-4

Y

Fig. III.8 Predicted spanwise pressure distribution for chord point

x=.5 (1/4 chord). -73-
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Fig. III.9 Predicted spanwise pressure distribution for chord point x=l.
(1/2 chord). -74-
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Fig. III.10 Predicted spanwise pressure distribution for chord point

x=1.5 (3/4 chord}.
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Fig. A.l1 Calculated unsteady interfercnce through direct pressure fields, dashed

lines show backscatter of blade B on A, solid lines show forward scatter

(blade A on B).
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Contour integrals for calculation of induced flows.
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Fig. A.3 Calculated unsteady interference through induced flows; dashed lines

indicate influence of airfoil B on A; solid lines that of A on B.
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